Original
Selección multicarácter en
bovinos lecheros cubanos
Multicharacter
selection in Cuban dairy cattle
Arelis Hernández
Rodríguez *,
Raquel Ponce de León Sentí **
*Departamento de
Rumiantes, Instituto de Ciencia Animal, Cuba.
**Departamento de Monogástricos, Instituto de Ciencia Animal, Cuba.
Correspondencia: arelishdez74@gmail.com
Recibido:
Julio, 2024; Aceptado: Agosto, 2024; Publicado: Octubre, 2024.
Objetivo. Realizar la
selección multicarácter de rasgos de producción lechera, reproducción y
longevidad, mediante la confección de índices de selección (IS) a través del
análisis de componentes principales. Materiales
y métodos: Se utilizaron los datos fenotípicos y genealógicos de hembras
bovinas Mambí de Cuba (3/4 Holstein ¼ Cebú), Siboney de Cuba (5/8 Holstein 3/8
Cebú) y Holstein con el propósito de realizar la selección multicarácter
de rasgos de producción lechera, reproducción y longevidad, mediante la
confección de índices de selección (IS) a través del análisis de componentes
principales (CP). Se utilizó un modelo animal multicarácter
para estimar los parámetros y valores genéticos (VG) de 5 445 vacas Mambí de
Cuba, 6 425 Siboney de Cuba y 1 571 Holstein, para la producción de leche
acumulada hasta los 305 días (VGL305), duración de la lactancia (VGDL),
edad al primer parto (VGEP1), intervalo parto gestación (VGIPG),
leche acumulada por vida (VGLTV) y vida productiva (VGVP).
Resultados: Las correlaciones
lineales entre los VG en las vacas Mambí con cada componente principal
mostraron que VGL305, VGLTV y VGDL están
altamente relacionados con la CP1 mientras que VGIPG
estuvo más asociado con la CP2. El VGVP y VGEP1 estuvieron
relacionados con la CP3. En el Siboney de Cuba VGL305 y
VGDL están altamente relacionados con la CP1 mientras que
el VGIPG, VGLTV y VGEP1 estuvieron más
asociados con la CP2. El VGVP estuvo relacionado con la
CP3. En el Holstein VGL305, VGDL y VGLTV
estuvieron relacionados con la CP1, y VGIPG y VGVP
con la CP2. Conclusión:
En bovinos lecheros es posible construir índices de selección basados
en los CP1-3. Estos mostraron variación genética, por
lo que podrían utilizarse en un programa de selección multicarácter.
Palabras clave: components principales, índices de selección, mejora
genética (Fuente: AGROVOC)
Objective. To perform multi-trait selection for dairy
production, reproduction and longevity traits by creating selection indices
(SI) using principal component analysis. Materials
and methods: Phenotypic and genealogical data from female Mambí de Cuba
(3/4 Holstein ¼ Zebu), Siboney de Cuba (5/8 Holstein
3/8 Zebu) and Holstein bovine animals were used for the purpose of multi-trait
selection for dairy production, reproduction and longevity traits by creating
selection indices (SI) using principal component analysis (PC). A multi-trait
animal model was used to estimate the genetic parameters and values
(GV) of 5 445 Mambí cows from Cuba, 6
425 Siboney cows from Cuba and 1 571 Holstein cows
for cumulative milk production up to 305 days (VGL305), lactation duration
(VGDL), age at first calving (VGEP1), calving-gestation interval (VGIPG),
cumulative milk per lifetime (VGLTV) and productive life (VGVP). Results: Linear correlations between
GVs in Mambí cows with each principal component
showed that VGL305, VGLTV and VGDL are highly related to CP1 while VGIPG was
more associated with CP2. VGVP and VGEP1 were related to CP3. In Siboney de Cuba VGL305 and VGDL are highly related to CP1
while VGIPG, VGLTV and VGEP1 were more associated with CP2. VGVP was related to
CP3. In Holstein VGL305, VGDL and VGLTV were related to CP1, and VGIPG and VGVP
to CP2. Conclusion: In dairy cattle
it is possible to construct selection indices based on CP1-3. These showed
genetic variation, so they could be used in a multi-trait selection program.
Keywords: principal components, selection indices, genetic
improvement (Source: AGROVOC)
INTRODUCCIÓN
Las dos herramientas básicas con que cuenta el genetista y el ganadero para ayudar a incrementar la productividad de su hato en un programa de mejoramiento genético animal son la combinación de los sistemas de apareamiento y la selección (Ossa, 1998).
Los índices de selección tradicionales (Hazel, 1943) son utilizados para seleccionar los animales por combinaciones lineales de los valores genéticos con los pesos económicos. A pesar de que esta metodología se ha utilizado por diversos autores (Betancur-Zambrano et al., 2012; Peripolli et al., 2016), en ocasiones resulta difícil obtener los pesos económicos, por lo que recientemente se ha incorporado el uso del análisis de componentes principales (CP), en la construcción de índices de selección en en el ganado lechero (Bignardi et al., 2012; Khan et al., 2013). Se plantea que el análisis de CP permite reducir la dimensionalidad de las variables, facilita la interpretación de datos en unos pocos componentes principales e identifica el tipo de relación entre las variables originales.
Los índices de selección son ampliamente utilizados, variando en cada país el énfasis que se le da a cada una de las características incluidas; por lo general se combinan características de producción, reproducción, conformación, tipo, salud, longevidad y fertilidad (Betancur-Zambrano et al., 2012)
A pesar de que varios estudios demostraron que la selección solo por producción lechera causa efectos negativos en la salud de la ubre (Heringstad et al., 2003) y el comportamiento reproductivo (Haile-Mariam et al., 2003; Kadarmideen et al., 2003), en bovinos lecheros cubanos el criterio de selección utilizado es únicamente la producción de leche. Por ello, el objetivo del presente trabajo fue realizar la selección multicarácter de rasgos de producción lechera, reproducción y longevidad, mediante la confección de índices de selección (IS) a través del análisis de componentes principales.
MATERIALES Y MÉTODOS
Se utilizó
la información de la producción lechera y la reproducción, que se registró en
el Sistema de Control Pecuario (SISCOP), de las vacas Mambí
de Cuba (¾ Holstein ¼ Cebú) que tuvieron sus partos entre los años 1986 al
2016, Siboney de Cuba (5/8 Hostein 3/8 Cebú) con partos entre los años 1984 al
2016 y Holstein con partos entre 1984 al 2016. Estas vacas se ubicaron en tres ganaderías
(Empresa Pecuaria Genética de Matanzas en la provincia de Matanzas, Los
Naranjos en Mayabeque y Camilo Cienfuegos de Pinar del Río) de la región
occidental de la República de Cuba.
Se
utilizaron los registros de los animales vivos y también los de aquellos que
habían causado baja. A partir del fichero de datos de la producción lechera
(vivas + bajas) se obtuvieron los rasgos: producción de leche acumulada hasta
los 305 días (L305), duración de la lactancia (DL) y edad al primer parto
(EP1). Mientras que, del fichero de datos de la reproducción (vivas + bajas) se
calculó el intervalo parto gestación (IPG). Del fichero de bajas de la
producción lechera se calculó la leche acumulada por vida (LTV); así como el
rasgo de longevidad denominado vida productiva (VP) determinada como los meses
del primer al último parto.
Edición de los datos y grupos de contemporáneos
Para
garantizar una mayor precisión en la estimación de los parámetros genéticos, se eliminaron aquellos
datos con bajas frecuencias, como las lactancias con menos de 30 días, las edades al primer parto inferiores a los 24
meses, las producciones de leche con
menos de 100 kg, los IPS e IPG inferiores a los 24 días y los IPP inferiores a
los 300 días. Las lactancias superiores a la décima se agruparon en esta
última. El
fichero de pedigrí quedo conformado por un total de 153 963 individuos.
Se utilizó el método de mínimos cuadrados en un modelo lineal general
(GLM) mediante el paquete estadístico SAS (2010)
versión 9.3 (SAS Institute, Cary,
NC, USA) para
definir los efectos fijos significativos (P<0.01) a incluir en el grupo de
contemporáneos (GC). Se consideró la combinación de rebaño-año-época de parto,
como GC y se eliminaron aquellos grupos conformados por
menos de 3 animales. Se determinaron dos épocas de parto: la lluviosa (de mayo
a octubre) y la poco lluviosa (de noviembre a abril).
En la tabla
1 se muestra el número de observaciones utilizado en cada fichero de datos, la
cantidad de animales, el número de grupos de contemporáneos (GC), los años de
parto (AP), las medias y desviaciones estándar para cada rasgo.
Tabla 1. Número de observaciones (N), años de parto (AP), media y
desviación estándar (DE) en rasgos de la producción de leche, la reproducción y
la longevidad de vacas Mambí de Cuba, Siboney de Cuba y Holstein.
Rasgos |
N |
Vacas |
Toros |
GC |
AP |
Media |
DE |
Mambí
de Cuba |
|||||||
L305 (kg) |
46 260 |
13 945 |
249 |
4 410 |
1987-2016 |
1861,19 |
857,06 |
DL (días) |
46 260 |
13 945 |
249 |
4 410 |
1987-2016 |
280,83 |
93,20 |
LTV (kg) |
10 549 |
10 549 |
242 |
2 951 |
1984-2015 |
5591,95 |
4904,87 |
EP1(meses) |
10 542 |
10 542 |
226 |
2 509 |
1987-2015 |
51,48 |
19,75 |
IPG (días) |
54 113 |
15 339 |
271 |
6 104 |
1985-2016 |
201,80 |
150,12 |
VP (meses) |
8 072 |
8 072 |
235 |
2 474 |
1984-2014 |
49,84 |
29,19 |
Siboney
de Cuba |
|||||||
L305 (kg) |
47 567 |
17 235 |
348 |
3 292 |
1987-2016 |
1545,55 |
805,62 |
DL (días) |
47 567 |
17 235 |
348 |
3 292 |
1987-2016 |
271,89 |
83,07 |
LTV (kg) |
13 171 |
13 171 |
339 |
2 553 |
1984-2015 |
3894,70 |
3741,95 |
EP1(meses) |
14 383 |
14 383 |
332 |
1 899 |
1987-2016 |
45,10 |
15,07 |
IPG (días) |
47 032 |
14 118 |
313 |
3 915 |
1986-2016 |
232,51 |
170,70 |
VP (meses) |
8 437 |
8 437 |
228 |
1 586 |
1984-2014 |
47,46 |
26,77 |
Holstein |
|||||||
L305 (kg) |
29 480 |
25 959 |
672 |
4 110 |
1987-2015 |
2415,99 |
1160,94 |
DL (días) |
29 480 |
25 959 |
672 |
4 110 |
1987-2015 |
290,99 |
78,74 |
LTV (kg) |
31 386 |
31 386 |
718 |
5 235 |
1984-2015 |
2833,75 |
1566,29 |
EP1(meses) |
21 695 |
21 695 |
585 |
3 025 |
1987-2015 |
34,81 |
12,00 |
IPG (días) |
12 060 |
3 721 |
353 |
2 786 |
1986-2015 |
262,25 |
187,79 |
VP (meses) |
1 920 |
1 920 |
284 |
897 |
1984-2013 |
46,83 |
28,70 |
L305:
Producción de leche acumulada hasta los 305 días; DL: Duración de
la lactancia; LTV: Leche acumulada por vida; EP1: Edad al primer parto; IPG:
Intervalo parto gestación; VP: Vida productiva
Se empleó
el programa ASREML (Gilmour et al., 2003) para estimar
los valores genéticos. Se empleó el siguiente modelo animal multicarácter:
+
Donde:
yi =
vector de las observaciones para el i-ésimo rasgo, bi =
vector de los efectos fijos (rebaño-año-época de parto y la edad al parto como
covariable lineal y cuadrática) para el i-ésimo rasgo, ai =
vector de los efectos aleatorios del animal para el i-ésimo rasgo,
ei =vector
de los efectos residuales aleatorios para el i-ésimo rasgo, xi y Zi = matrices de diseño que
relacionan los datos con los efectos fijos y aleatorios, respectivamente
Los VG
estimados se importaron al paquete estadístico SAS (2010) versión 9.3 (SAS Institute, Cary, NC, USA) y
posteriormente se unieron todos los ficheros dejando solo aquellas vacas que
tuvieron información de los VG para todos los rasgos estudiados. El fichero
final presentó un total de 5 445 vacas Mambí de Cuba, 6 425 Siboney de Cuba y 1
571 Holstein.
El análisis
de componentes principales se realizó mediante el paquete estadístico SPSS
(2002) versión 11.5. Este análisis se realizó como una vía para condensar o
resumir la información contenida en varias variables originales (en este caso
los VG) en un conjunto más pequeño de nuevas dimensiones compuestas o variantes
llamadas componentes principales, con una pérdida mínima de información, y para
explorar las relaciones entre los VG obtenidos (VGL305, VGDL,
VGLTV, VGEP1, VGIPG, VGVP,) para
explicar la estructura de los datos (Hair et al.,
2009).
Debido
a las diferencias en las unidades de medida, los VG para todos los rasgos se
estandarizaron usando la distribución normal estándar (‘z’). Se utilizó el
criterio de Kaiser (1960) para seleccionar el componente principal que explica
la mayor variación genética de los datos. Este criterio toma en consideración
solo aquellos componentes principales con valores propios por encima de la
unidad. El valor propio de un componente principal está asociado con la
varianza de todos los rasgos incluidos en el componente principal. Cada valor
propio está asociado con un vector unitario llamado vector propio. Los vectores
propios representan la fortaleza y dirección de la varianza de cada rasgo con
el componente principal. En el presente trabajo se utilizó una matriz de
correlación de variables para obtener los valores propios.
Al utilizar
los VG estandarizados en este análisis, cada componente principal puede generar
un nuevo valor denominado puntuación del componente principal, el cual es la
suma de los VG estandarizados del peso de cada rasgo por su respectivo
coeficiente de puntuación estandarizado (SSC). De esta forma, el componente
principal puede ser usado como un índice para evaluar animales, para múltiples
rasgos. Los coeficientes de puntuación estandarizados de cada VG en cada
componente principal se obtuvieron utilizando la siguiente formula:
SSCij=
Donde:
SSCij=
Coeficientes de puntuación estandarizados de los VG de cada rasgo en el j-ésimo
componente principal
La
puntuación del componente principal (índice) se calculó como: CPjl=
Donde:
CPjl=
Puntuación del componente principal (puntuación del índice) para el l-ésimo animal
en el j-ésimo
componente principal, SSCij= Coeficientes
de puntuación estandarizados de los VG del i-ésimo rasgo en el j-ésimo componente principal,
VGil =
Valor genético estimado estandarizado del i-ésimo
rasgo en el l-ésimo
animal
RESULTADOS Y DISCUSIÓN
La confección de los índices de
selección tradicionales en ocasiones resulta difícil por no disponer de los
pesos económicos, además estos están sujetos a constantes variaciones del
mercado. Una alternativa fue incorporar el análisis de componentes principales en la construcción de índices
de selección. Buzanskas et al. (2013)
expusieron que el uso de los CP es una metodología para construir combinaciones
lineales entre los valores genéticos de los rasgos disponibles en una base de
datos, tomando en consideración los valores propios del componente principal y
los vectores propios de los rasgos en cada componente principal, los cuales son
medidas de variabilidad. Dentro de las ventajas de su uso se destaca que rasgos
con bajos estimados de heredabilidad, que raramente son tomados en
consideración en un proceso de selección directa, pueden incluirse en el
componente principal.
En el Mambí de Cuba
los componentes principales 1 y 2 (CP1, CP2) fueron los
que obtuvieron el criterio de Kaiser (tabla 2) y el componente 3 (CP3)
presentó un valor cercano a 1 por lo que también se seleccionó. De las 6
dimensiones originales (por ejemplo: VGL305, VGDL, VGLTV,
VGEP1, VGIPG, VGVP), el 69.6 % de la varianza
total de los VG fue explicada por los CP1 al CP3. El CP1
fue el de mayor aporte, este explicó el 33.5% de la varianza total. En el
Siboney de Cuba los tres primeros componentes principales (CP1, CP2,
CP3) fueron los que obtuvieron el criterio de Kaiser. El 70.8
% de la varianza total de los VG fue explicada por los CP1-3, siendo
el CP1 el de mayor aporte pues explicó el 32.4 % de la
varianza total. Mientras que, en el Holstein los dos primeros componentes
principales (CP1, CP2) fueron los que obtuvieron el
criterio de Kaiser. Estos explicaron el 53.7 % de la varianza total de los VG.
Tabla 2. Valores propios para cada componente principal, proporción total y acumulada de la varianza genético aditiva, del primer al sexto componente principal (CP1-6), en vacas Mambí de Cuba, Siboney de Cuba y Holstein.
Componentes |
Valores
propios |
||
Total |
% de la varianza genético aditiva |
% acumulado |
|
Mambí
de Cuba |
|||
CP1 |
2,015 |
33,5 |
33,5 |
CP2 |
1,173 |
19,5 |
53,1 |
CP3 |
0,988 |
16,4 |
69,6 |
CP4 |
0,869 |
14,4 |
84,0 |
CP5 |
0,589 |
9,82 |
93,9 |
CP6 |
0,366 |
6,09 |
100 |
Siboney
de Cuba |
|||
CP1 |
1,945 |
32,414 |
32,414 |
CP2 |
1,252 |
20,862 |
53,276 |
CP3 |
1,055 |
17,585 |
70,861 |
CP4 |
0,765 |
12,743 |
83,604 |
CP5 |
0,662 |
11,038 |
94,642 |
CP6 |
0,321 |
5,358 |
100,000 |
Holstein |
|||
CP1 |
2,098 |
34,972 |
34,972 |
CP2 |
1,127 |
18,781 |
53,753 |
CP3 |
0,974 |
16,232 |
69,985 |
CP4 |
0,938 |
15,632 |
85,617 |
CP5 |
0,509 |
8,479 |
94,096 |
CP6 |
0,354 |
5,904 |
100,000 |
Khan et al. (2013) en el ganado Vrindavani (de 50 a 75% de Holstein-Friesian, Brown Swiss, Jersey - 25 a 50% de ganado Hariana) de la India, apreciaron que los 3 primeros componentes principales explicaron el 93.08% de la varianza total. En la raza Nelore, los tres primeros CP explicaron el 100% de la varianza genética aditiva de nueve rasgos relacionados con la producción de carne (Boligon et al., 2013). Estos resultados probablemente se deban a que, en el primer caso, sólo se utilizaron rasgos de la producción lechera (producciones de leche parciales a 100, 170 y 240 días en la primera lactancia, en la segunda lactancia y sus respectivas producciones totales), y en el segundo caso, solamente rasgos de la producción de carne.
Los resultados del presente trabajo se corresponden con otros donde también se demostró que con el uso del análisis de CP se puede reducir la dimensionalidad de los rasgos. De acuerdo a los estudios Bignardi et al. (2012) en vacas Holstein, solo se requerían dos CP para resumir la variación genética de los toros entre los 10 rasgos evaluados (10 producciones mensuales de leche). También en vacas Canchim, Buzanskas et al. (2013) reportaron que el 73.37% de la varianza total de los VG de tres rasgos reproductivos y uno de crecimiento era explicada por dos CP. Por su parte, Agudelo-Gómez et al. (2015) observaron que los tres primeros CP explicaron el 65.78% de la varianza original de los valores genéticos para la producción lechera a 270 días, la edad al primer parto, el peso al destete y el peso a diferentes edades (12, 18 y 24 meses).
Las correlaciones lineales entre los VG de los rasgos estudiados con cada componente principal (tabla 3) mostraron que en el Mambí de Cuba los rasgos relacionados con la producción de leche y la duración de la lactancia están altamente relacionados con la CP1 mientras que el rasgo reproductivo estuvo más asociado con la CP2. La VP y la EP1 estuvieron relacionadas con la CP3. Así el CP1 pudiera ser interpretado como un índice genético relacionado a los rasgos de producción lechera y duración de la lactancia, mientras que el CP3 pudiera ser un índice genético relacionado a la longevidad y la edad al primer parto. En este sentido, pudiera ser mejor seleccionar los animales para IPG considerando solo su VG en vez de usar el índice del CP2.
Tabla 3. Correlaciones lineales de los VG estandarizados con el componente principal 1 al 3 (CP1-3), en vacas Mambí de Cuba, Siboney de Cuba y Holstein.
VG |
CP1 |
CP2 |
CP3 |
Componentes en el Mambí de Cuba |
|||
VGL305 |
0,843 |
0,067 |
0,030 |
VGDL |
0,842 |
0,189 |
-0,034 |
VGLTV |
0,641 |
-0,457 |
0,027 |
VGIPG |
0,368 |
0,633 |
0,066 |
VGVP |
0,141 |
-0,572 |
0,635 |
VGEP1 |
-0,169 |
0,444 |
0,760 |
VG |
Componentes
en el Siboney de Cuba |
||
CP1 |
CP2 |
CP3 |
|
VGL305 |
0,867 |
-0,100 |
0,004 |
VGDL |
0,881 |
-0,005 |
-0,043 |
VGLTV |
0,405 |
0,586 |
-0,320 |
VGIPG |
0,448 |
-0,654 |
0,039 |
VGVP |
0,083 |
-0,015 |
0,917 |
VGEP1 |
0,214 |
0,686 |
0,331 |
VG |
Componentes
en el Holstein |
||
CP1 |
CP2 |
|
|
VGL305 |
0,842 |
-0,159 |
|
VGDL |
0,717 |
0,337 |
|
VGLTV |
0,728 |
-0,478 |
|
VGIPG |
0,284 |
0,564 |
|
VGVP |
0,255 |
0,639 |
|
VGEP1 |
-0,446 |
0,184 |
|
Las correlaciones lineales entre los VG de los rasgos estudiados en las vacas Siboney de Cuba con cada componente principal mostraron que los rasgos relacionados con la producción de leche y la duración de la lactancia están altamente relacionados con la CP1 mientras que el IPG, LTV y EP1 estuvieron más asociados con la CP2. La VP estuvo relacionada con la CP3. Así el CP1 pudiera ser interpretado como un índice genético relacionado a los rasgos de producción lechera y duración de la lactancia, mientras que el CP2 pudiera ser un índice genético relacionado a la reproducción y la producción lechera por vida. En el caso del CP3 sería mejor seleccionar los animales considerando solo su VG para VP, en vez de usar un índice, dado que las correlaciones de los VG del resto de los rasgos con esta componente fueron bajas.
Las correlaciones lineales entre los VG de los rasgos estudiados en las vacas Holstein con cada componente principal mostraron que los rasgos relacionados con la producción de leche y la duración de la lactancia están altamente relacionados con la CP1 mientras que el IPG y VP estuvieron más asociados con la CP2.
Los pesos de estos índices son coeficientes de puntuación estandarizados (SSC) para cada VG estandarizado de las vacas de las tres razas estudiadas (tabla 4). El mayor de los valores absolutos del SSC es el de mayor importancia relativa de los VG estandarizados en el componente principal. Esta importancia es explicada por la mayor correlación lineal entre los rasgos con el componente principal (tabla 3).
La puntuación del componente principal (valor del índice) para cada animal Mambí de Cuba, en cada componente principal, fue calculada como:
CP1= 0.418 (VGL305) + 0.418 (VGDL) + 0.318 (VGLTV)
CP3= 0.643 (VGVP) + 0.770 (VGEP1)
La puntuación del componente principal (valor del índice) para cada animal Siboney de Cuba, en cada componente principal, fue calculada como:
CP1= 0.446 (VGL305) + 0.453 (VGDL)
CP2= 0.469 (VGLTV) - 0.522 (VGIPG) + 0.548 (VGEP1)
La puntuación del componente principal (valor del índice) para cada animal Holstein, en cada componente principal, fue calculada como:
CP1= 0.401 (VGL305) + 0.342 (VGDL) + 0.347 (VGLTV)
CP2= 0.500 (VGIPG) + 0.567 (VGVP)
Tabla 4. Coeficientes de puntuación
estandarizados (SSC) de cada VG estimado estandarizado para todos los rasgos en
cada componente principal (CP1-3), en vacas Mambí de Cuba Siboney de
Cuba y Holstein.
VG |
SSC (CP1) |
SSC (CP2) |
SSC (CP3) |
|
Mambí
de Cuba |
||
VGL305 |
0,418 |
0,057 |
0,030 |
VGDL |
0,418 |
0,161 |
-0,034 |
VGLTV |
0,318 |
-0,389 |
0,028 |
VGIPG |
0,183 |
0,539 |
0,067 |
VGVP |
0,070 |
-0,487 |
0,643 |
VGEP1 |
-0,084 |
0,379 |
0,770 |
|
Siboney de Cuba |
||
VGL305 |
0,446 |
-0,080 |
0,004 |
VGDL |
0,453 |
-0,004 |
-0,041 |
VGLTV |
0,208 |
0,469 |
-0,303 |
VGIPG |
0,230 |
-0,522 |
0,037 |
VGVP |
0,043 |
-0,012 |
0,869 |
VGEP1 |
0,110 |
0,548 |
0,313 |
|
Holstein |
||
VGL305 |
0,401 |
-0,141 |
|
VGDL |
0,342 |
0,299 |
|
VGLTV |
0,347 |
-0,424 |
|
VGIPG |
0,135 |
0,500 |
|
VGVP |
0,122 |
0,567 |
|
VGEP1 |
-0,213 |
0,164 |
|
La
selección de vacas Mambí de Cuba para VGL305, VGLTV y VGDL
mediante la CP1 podría realizarse por separado de la selección para
VGEP1 y VGVP a través de la CP3 considerando
la correlación lineal entre los VG con cada componente principal (Tabla 3). La
selección para IPG puede realizarse directamente por su valor genético. Estos
resultados también se corresponden con las correlaciones genéticas entre los
rasgos estudiados (Hernández et al., 2011), que revelaron una
correlación genética media entre L305, LTV y DL (0.33 a 0.46) y entre EP1 y VP
(-0.56); mientras que las correlaciones genéticas entre estos cinco rasgos y el
IPG fueron bajas (entre 0.12 y 0.26) por lo que cambiarán casi
independientemente.
Mientras
que la selección de vacas Siboney de Cuba para VGL305 y VGDL
mediante la CP1 podría realizarse por separado de la selección para
VGIPG, VGEP1 y VGLTV a través de la CP2
considerando la correlación lineal entre los VG con cada componente principal
(Tabla 3). La selección para VP puede realizarse directamente por su valor
genético.
En
el Holstein, la selección para VGL305, VGLTV y VGDL
mediante la CP1 podría realizarse por separado de la selección para
VGIPG y VGVP a través de la CP2 considerando
la correlación lineal entre los VG con cada componente principal (Tabla 3).
Con
el uso del análisis de componentes principales se pueden seleccionar los
animales en base a solo dos puntajes generados (en el Mambí de Cuba por las CP1
y CP3; y en el Siboney de Cuba y el Holstein por las CP1
y CP2) en lugar de los seis valores genéticos. Según Buzanskas et al., (2013) cuando se utiliza este
enfoque, los animales se pueden seleccionar de una manera equilibrada una vez
que los puntajes de cada componente principal son combinaciones lineales de
todos los valores genéticos de los rasgos evaluados, y no pesos empíricos
típicamente utilizados en programas de mejora.
En
vacas Mambí de Cuba, CP1 puede considerarse un índice genético de
producción lechera porque favorece a los animales genéticamente superiores para
VGL305, VGLTV y VGDL; mientras que el CP3
puede ser un índice genético relacionado a la longevidad y la edad al primer
parto. La mayor variabilidad para VGL305, VGLTV y VGDL
puede explicarse por el hecho de que actualmente solo se hace énfasis en
la selección por VGL305 y no se aplica una alta intensidad de
selección. Es importante tener en cuenta que los VGEP1 negativos en
la CP1 son interesantes porque el objetivo es reducir la edad al
primer parto pues este rasgo presenta una correlación genética media con la
producción de leche acumulada por vida (-0.37) y la longevidad (-0.56), así que
cambiarán juntos de alguna forma, pero en sentido contrario.
En
vacas Siboney de Cuba la CP1 puede considerarse un índice genético
de producción lechera porque favorece a los animales genéticamente superiores para
VGL305 y VGDL; mientras que el CP2 puede ser
un índice genético relacionado a la reproducción y producción lechera por vida.
Por su parte, en el Holstein la CP1
puede considerarse un índice genético de producción lechera porque favorece a
los animales genéticamente superiores para VGL305, VGLTV
y VGDL; mientras que el CP2 puede ser un índice genético
relacionado a la reproducción y la longevidad.
CONCLUSIÓN
Se concluye
que en bovinos lecheros (Mambí de Cuba, Siboney de Cuba y Holstein) es posible
construir índices de selección basados en los CP1-3. Estos
mostraron variación genética, por lo que podrían ser utilizados en un programa
de selección multicarácter.
REFERENCIAS
Agudelo-Gómez, D., Pineda-Sierra, S., &
Cerón-Muñoz, M. F. (2015). Genetic
evaluation of dual-purpose buffaloes (Bubalus bubalis) in Colombia using
principal component analysis. PloS
one, 10(7), e0132811.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132811
Betancur-Zambrano, M. F.,
Páez-Ordóñes, K. N., Solarte-Portilla, C., &
Osejo-Rosero, E. (2012). Construction
of selection indices for Holstein cattle in the high tropic of Nariño. Investigación Pecuaria. http://395 texto del
artículo-1466-1-10-20121026.pdf
Bignardi,
A. B., El Faro, L., Rosa, G. J. M., Cardoso, V. L., Machado, P. F., &
Albuquerque, L. G. D. (2012). Principal
components and factor analytic models for test-day milk yield in Brazilian Holstein
cattle. Journal of Dairy Science, 95(4), 2157-2164. https://www.ncbi.nlm.nih.gov/pubmed/22459860
Boligon, A. A., Bignardi, A. B., Mercadante, M. E. Z., Lôbo,
R. B., & Albuquerque, L. G. (2013). Principal components and factor analytic models for
birth to mature weights in Nellore cattle. Livestock Science, 152(2-3),
135-142. http://agris.fao.org/agris-search/search.do?recordID=US201400055887
Buzanskas, M. E., Savegnago,
R. P., Grossi, D. A., Venturini, G. C., Queiroz, S.
A., Silva, L. O. C., ... & Alencar, M. M. (2013). Genetic parameter estimates and principal component
analysis of breeding values of reproduction and growth traits in female Canchim cattle. Reproduction,
Fertility and Development, 25(5),
775-781. http://dx.doi.org/10.1071/RD12132
Gilmour, A. R., Gogel, B. J., Cullis, B. R.,
& Thompson, R. (2009). ASReml user guide release 1.10. https://www.vsni.co.uk/downloads/asreml/release1/doc/UserGuide.pdf
Haile-Mariam, M., Bowman, P. J., & Goddard,
M. E. (2003). Genetic and environmental relationship among calving interval,
survival, persistency of milk yield and somatic cell count in dairy
cattle. Livestock
production science, 80(3),
189-200. https://doi.org/10.1016/S0301-6226(02)00188-4
Hair, J. F., Black, W. C., Babin,
B. J., Anderson, R. E., & Tatham, R. L. (2009).
Multivariate data analysis. 7th Edition, Prentice Hall, Upper Saddle River,
761. https://www.pearson.com/us/higher-education/program/Hair-Multivariate-Data-Analysis-7th-Edition/PGM263675.html
Hazel,
L. N. (1943). The genetic basis for constructing selection indexes. Genetics, 28(6), 476-490. http://www.genetics.org/content/28/6/476
Heringstad, B., Chang, Y. M., Gianola,
D., & Klemetsdal, G. (2003). Genetic analysis of
longitudinal trajectory of clinical mastitis in first-lactation Norwegian
cattle. Journal of Dairy Science, 86(8), 2676-2683. https://www.researchgate.net/profile/Daniel_Gianola/publication/105977-40_Genetic_Analysis_of_Longitudinal_Trajectory_of_Clinical_Mastitis_in_FirstLactation_Norwegian_Cattle/links/00b7d52532f41e21c8000000.pdf
Hernández, A., Ponce de León,
R., García, S. M., García, R., Mora, M., Gutiérrez, M., & Guzmán, G.
(2011). Parámetros genéticos en rasgos de la producción lechera y la longevidad
de vacas Mambí de Cuba. Archivos de zootecnia, 60(231),
513-520. https://dx.doi.org/10.4321/S0004-05922011000300040
Kadarmideen, H. N., Thompson, R., Coffey, M. P., & Kossaibati, M. A. (2003). Genetic parameters and
evaluations from single-and multiple-trait analysis of dairy cow fertility and
milk production. Livestock
Production Science, 81(2-3),
183-195. https:// doi.org/10.1016/S0301-6226(02)00274-9
Kaiser, H. F.
(1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1),
141-151. https://doi.org/10.1177/001316446002000116
Khan, T. A., Tomar, A. K. S., & Dutt, T. (2012). Prediction
of lifetime milk production in synthetic crossbred cattle strain Vrindavani of North India. Indian Journal of Animal
Sciences, 82(11), 1367. https://www.researchgate.net/publication/290530985
Khan, T. A., Tomar, A. K.
S., Dutt, T., & Bhushan, B. (2013). Principal component
regression analysis in lifetime milk yield prediction of crossbred cattle
strain Vrindavani of North India. Indian
Journal of Animal Sciences, 83(12), 1288-1291. https://www.researchgate.net/publication/265422056
Ossa, G. (1998). La selección herramienta del mejoramiento
genético. Revista CORPOICA. https://agriperfiles.agri-d.net/display/AS-pub33D846B4BE39AA8B2689E021A49749CD
Peripolli, E., Oliveira, M. S. L.,
Baldi, F., Pereira, A. S. C., Vercesi, A. E., &
Albuquerque, L. G. (2016). Valores econômicos para
sistemas de recria e engorda de bovinos Nelore e cruzado. Archivos de zootecnia, 65(250),
145-154. https:// doi.org/10.21071/az.
v65i250.481
Concepción y diseño de la investigación: AHR, RPLS; análisis e
interpretación de los datos: AHR, RPLS; redacción del artículo: AHR, RPLS.
Los autores declaran que no existen
conflicto de intereses.