Suplementación de selenio y actividad de la enzima glutatión peroxidasa en suero sanguíneo en cerdos: un metanálisis

  • Jimmy Quisirumbay-Gaibor *Doctorado en Ciencia Animal, Escuela de Posgrado, Universidad Nacional Agraria La Molina, Lima, Perú. **Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Ciudadela Universitaria, Quito, Ecuador. https://orcid.org/0000-0003-1612-8503
  • Carlos Vílchez Perales *Doctorado en Ciencia Animal, Escuela de Posgrado, Universidad Nacional Agraria La Molina, Lima, Perú

Resumen

Antecedentes: La evaluación de la actividad de la enzima glutatión peroxidasa (GSH-Px) como indicador de los niveles de selenio (Se) ha sido extensivamente estudiada con resultados variables entre estudios. El objetivo de este artículo fue determinar el efecto de la suplementación de Se sobre la actividad de GSH-Px medida en suero sanguíneo y el posible impacto de otros nutrientes dietéticos y elementos del diseño experimental sobre la variable respuesta. Métodos: Se utilizó la técnica de metanálisis bajo el modelo de efectos aleatorios que incluyó tamaño de efecto, heterogeneidad, metaregresión y sesgo de publicación. Resultados: La suplementación dietética de selenio incrementa (P < 0,00001) la actividad enzimática en el análisis general (0,326 unidades.mL-1) como cuando las fuentes suplementadas fueron inorgánica (0,327 unidades.mL-1), orgánica (0,325 unidades.mL-1), en lechones (0,261 unidades.mL-1) y cerdos en crecimiento-finalización (0,328 unidades.mL-1). El efecto de la suplementación sobre la actividad de la enzima no se presentó de manera consistente entre los estudios como lo reflejan los valores en la prueba de inconsistencia (> 95 %). En las metaregresiones se determinó que la actividad de GSH-Px se ve afectada (P < 0,001) por número de repeticiones por tratamiento, número de individuos por unidad experimental, número de individuos muestreados por unidad experimental, nivel de selenio, cobre, zinc, vitaminas A y E en el alimento. Conclusiones: De esta investigación se concluye que la suplementación dietética de Se, favorece la actividad de GSH-Px medida en suero y que existen varios factores relacionados al diseño experimental y otros nutrientes con función antioxidante que afectan la variable en estudio.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aaron, D. K. y Hays, V. W. (2004). How many pigs? Statistical power considerations in swine nutrition experiments. Journal of animal science, 82(13), 245-254. Adkins, R. S. y Ewan, R. C. (1984). Effects of selenium on performance, serum selenium concentration and glutathione peroxidase activity in pigs. Journal of animal science, 58(2), 346-350. Ahsan, U. Kamran, Z. Raza, I. Ahmad, S. Babar, W. Riaz, M. H. y Iqbal, Z. (2014). Role of selenium in male reproduction—A review. Animal reproduction science, 146(1-2), 55-62. Almad, H. Tian, J. Wang, J. Khan, M. A. Wang, Y. Zhang, L. y Wang, T. (2012). Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. Journal of agricultural and food chemistry, 60(29), 7111-7120. Andretta, I. Kipper, M. Lehnen, C. R. Demori, A. B. Remus, A. y Lovatto, P. A. (2012). Meta-analysis of the relationship between ractopamine and dietary lysine levels on carcass characteristics in pigs. Livestock Science, 143(1), 91-96. Apple, J. K. Rincker, P. J. McKeith, F. K. Carr, S. N. Armstrong, T. A. y Matzat, P. D. (2007). Meta-analysis of the ractopamine response in finishing swine. The Professional Animal Scientist, 23(3), 179-196. Bansal, A. y Simon, M. C. (2018). Glutathione metabolism in cancer progression and treatment resistance. Journal of Cell Biology, 217(7), 2291-2298. Bax, L. (2016). MIX 2.0 - Professional software for meta-analysis in Excel. Version 2.0.1.5. BiostatXL. Borenstein, M.; Hedges, L. V.; Higgins, J. P.; & Rothstein, H. R. (2011). Introduction to meta-analysis. EE.UU: John Wiley & Sons. Bougouin, A. Appuhamy, J. Kebreab, E. Dijkstra, J. Kwakkel, R. P. y France, J. (2014). Effects of phytase supplementation on phosphorus retention in broilers and layers: A meta-analysis. Poultry science, 93(8), 19811992. Calvo, L. Toldrá, F. Rodríguez , A. I. López-Bote, C. y Rey, A. I. (2017). Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs. Food science & nutrition, 5(1), 94-102. Cao, J. Guo, F. Zhang, L. Dong, B. y Gong, L. (2015). Effects of dietarySelenomethionine supplementation on growth performance, antioxidantstatus, plasma selenium concentration, and immune function inweaning pigs. Journal of Animal Science and Biotechnology, 6(1), 46-53.

Catalá-López, F. y Tobías, A. (2014). Metaanálisis en ensayos clínicos aleatorizados, heterogeneidad e intervalos de predicción. Med Clin (Barc), 142(6), 270-274. Chen, J. Han, J. H. Guan, W. T. Chen, F. Wang, C. X. Zhang, Y. Z. y Lin, G. (2016a). Selenium and vitamin E in sow diets: I. Effect on antioxidant status and reproductive performance in multiparous sows. Animal Feed Science and Technology, 221(1), 111-123. Chen, J. Han, J. H. Guan, W. T. Chen, F. Wang, C. X. Zhang, Y. Z. y Lin, G. (2016b). Selenium and vitamin E in sow diets: II. Effect on selenium status and antioxidant status of the progeny. Animal Feed Science and Technology, 221(1), 101-110. Chew, B. P. (1996). Importance of antioxidant vitamins in immunity and health in animals. Animal Feed Science and Technology, 59(1), 103-114. Chiba, L. I. (2013). Sustainable swine nutrition. (First edition ed.). Ames, Iowa, USA: John Wiley & Sons. Collins, J. F. (2016). Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals. Academic Press. Dalgaard, T. S. Briens, M. Engberg, R. M. y Lauridsen, C. (2018). The influence of selenium and selenoproteins on immune responses of poultry and pigs. Animal feed science and technology, 238(1), 73-83. Duntas, L. H. y Benvenga, S. (2015). Selenium: an element for life. Endocrine, 48(3), 756-775. Egger, M. Smith, G. D. Schneider, M. y Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. Bmj, 315(7109), 629-634. Falk, M. Bernhoft, A. Framstad, T. Salbu, B. Wisløff, H. Kortner, T. M. y Oropeza-Moe, M. (2018). Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. Journal of Trace Elements in Medicine and Biology, 50(1), 527-536. Halliwell, B. (1994). Free radicals and antioxidants: a personal view. Nutrition reviews, 52(8), 253-265. Higgins, J. P. y Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in medicine, 21(11), 1539-1558. Huang, Z. Rose, A. H. y Hoffmann, P. R. (2012). The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxidants & redox signaling, 16(7), 705-743. Hung, Y. T. Hanson, A. R. Shurson, G. C. y Urriola, P. E. (2017). Peroxidized lipids reduce growth performance of poultry and swine: a meta-analysis. Animal Feed Science and Technology, 231(1), 47-58. Ighodaro, O. M. y Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. Jenkins, K. J. y Winter, K. A. (1973). Effects of selenium supplementation of naturally high selenium swine rations on tissue levels of the element. Canadian Journal of Animal Science, 53(3), 561-567. Jiang, J. Tang, X. Xue, Y. Lin, G. y Xiong, Y. L. (2017). Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork. Meat science, 131(1), 99-106. Kiefer, C. y Sanches, J. F. (2009). Metanálise dos níveis de ractopamina em dietas para suínos em terminação. Revista Brasileira de Zootecnia, 38(6), 1037-1044. Labunskyy, V. M. Hatfield, D. L. y Gladyshev, V. N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiological reviews, 94(3), 739-777. Lawrence , R. A. y Burk, R. F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and biophysical research communications, 71(4), 952-958. Létourneau-Montminy, M. P. Jondreville, C. Sauvant, D. y Narcy, A. (2012). Meta-analysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase. Animal, 6(10), 15901600. Lisiak, D. Janiszewski, P. Blicharski, T. Borzuta, K. Grześkowiak, E. Lisiak, B. y Hammermeister, A. (2014). Effect of selenium supplementation in pig feed on slaughter value and physicochemical and sensory characteristics of meat. Annals of Animal Science, 14(1), 213-222. Lubos, E. Loscalzo, J. y Handy, D. E. (2011). Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidants & redox signaling, 15(7), 1957-1997. Ma, Y. L. Lindemann, M. D. Pierce, J. L. Unrine, J. M. y Cromwell, G. L. (2014). Effect of inorganic or organic selenium supplementation on reproductive performance and tissue trace mineral concentrations in gravid firstparity gilts, fetuses, and nursing piglets. Journal of animal science, 92(12), 5540-5550. Mahan, D. C. y Parrett, N. A. (1996). Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and finisher swine. Journal of Animal Science, 74(12), 2967-2974.

Mahan, D. C. y Peters, J. C. (2004). Long-term effects of dietary organic and inorganic selenium sources and levels on reproducing sows and their progeny. Journal of animal science, 82(5), 1343-1358. Mahan, D. C. Azain, M. Crenshaw, T. D. Cromwell, G. L. Dove, C. R. Kim, S. W. y van Heugten, E. (2014). Supplementation of organic and inorganic selenium to diets using grains grown in various regions of the United States with differing natural Se concentrations and fed to grower–finisher swine. Journal of animal science, 92(11), 4991- 4997. Mahan, D. C. Cline, T. R. y Richert, B. (1999). Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. Journal of Animal Science, 77(8), 2172-2179. Marin-Guzman, J. Mahan, D. C. Chung, Y. K. Pate, J. L. y Pope, W. F. (1997). Effects of dietary selenium and vitamin E on boar performance and tissue responses, semen quality, and subsequent fertilization rates in mature gilts. Journal of Animal Science, 75(11), 2994-3003. Markley, R. L. Williamson, D. R. Katkere, B. Dewan, K. K. Shay, A. E. Sumner, S. E. y Kirimanjeswara, G. S. (2017). Macrophage selenoproteins restrict intracellular replication of Francisella tularensis. The Journal of Immunology, 198(1 Supplement), 148-12. Martins, S. De Andrade, A. F. Zaffalon, F. G. Parazzi, L. J. Bressan, F. F. Pugine, S. y Moretti, A. S. (2014). Organic selenium increases PHGPx, but does not affect quality sperm in raw boar semen. Livestock Science, 164(1), 175178. McKenzie, R. C. Rafferty, T. S. y Beckett, G. J. (1998). Selenium: an essential element for immune function. Immunology today, 19(8), 342-345. Metzler-Zebeli, B. U. Trevisi, P. Prates, J. A. Tanghe, S. Bosi, P. Canibe, N. y Zebeli, Q. (2017). Assessing the effect of dietary inulin supplementation on gastrointestinal fermentation, digestibility and growth in pigs: A metaanalysis. Animal Feed Science and Technology, 233(1), 120-132. Moher, D. Shamseer, L. Clarke, M. Ghersi, D. Liberati, A. Petticrew, M. y Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4(1), 1-8. National Research Council. (2012). Nutrient requirements of swine (Eleventh Revised Edition ed.). Washigton, D.C.: National Academies Press. Oropeza-Moe, M. Wisløff, H. y Bernhoft, A. (2015). Selenium deficiency associated porcine and human cardiomyopathies. Journal of Trace Elements in Medicine and Biology, 31(1), 148-156. PIC. (2016). Manual de especificación de nutrientes. PIC. Remus, A. Peres, F. M. Hauschild, L. Andretta, I. Kipper, M. de Paula, G. J. y Pomar, C. (2015). Exploratory study on the utilization of different dietary methionine sources and methionine to lysine ratio for growing–finishing pigs. Livestock Science, 181(1), 96-102. Roman, M. Jitaru, P. y Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics, 6(1), 25-54. Rostagno, H. S. Texeira Albino, L. F. Hannas, M. I. Lopes Donzele, J. Sakomura, N., Perazzo, F. G., de Oliveira Brito, C. (2017). Tablas Brasileñas para Aves y Cerdos. (Cuarta edición ed.). Viçosa: Universidad Federal de Viçosa. Sales, J. (2011). A meta-analysis of the effects of dietary betaine supplementation on finishing performance and carcass characteristics of pigs. Animal feed science and technology, 165(1-2), 68-78. Sauvant, D. Schmidely, P. Daudin, J. J. y St-Pierre, N. R. (2008). Meta-analyses of experimental data in animal nutrition. Animal, 2(8), 1203-1214. Seyedali, A. y Berry, M. J. (2014). Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. Rna, 20(8), 1248-1256. Surai, P. F. y Fisinin, V. I. (2014). Selenium in poultry breeder nutrition: An update. Animal Feed Science and Technology, 191(1), 1-15. Surai, P. F. y Fisinin, V. I. (2015). Selenium in Pig Nutrition and reproduction: Boars and semen quality—A Review. Asian-Australasian journal of animal sciences, 28(5), 730-746. Surai, P. F. y Fisinin, V. I. (2016). Selenium in sow nutrition. Animal Feed Science and Technology, 211(1), 18-30. Torres-Pitarch, A. Hermans, D. Manzanilla, E. G. Bindelle, J. Everaert, N. Beckers, Y. y Lawlor, P. G. (2017). Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Animal Feed Science and Technology, 233(1), 145-159. Torres-Pitarch, A. Manzanilla, E. G. Gardiner, G. E. O’Doherty, J. V. y Lawlor, P. G. (2019). Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source. Animal Feed Science and Technology, 251(1), 153-165.

Urso, U. R. Dahlke, F. Maiorka, A. Bueno, I. J. Schneider , A. F. Surek, D. y Rocha, C. (2015). Vitamin E and selenium in broiler breeder diets: Effect on live performance, hatching process, and chick quality. Poultry science, 94(5), 976-983. Wang, L. Xu, X. Su, G. Shi, B. y Shan, A. (2017). High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. Journal of Dairy Research, 84(1), 8-13. Young, L. G. Castell, A. G. y Edmeades, D. E. (1977). Influence of dietary levels of selenium on tissue selenium of growing pigs in Canada. Journal of animal science, 44(4), 590-594. Zeng, Z. K. Shurson, G. C. y Urriola, P. E. (2017). Prediction of the concentration of standardized ileal digestible amino acids and safety margins among sources of distillers dried grains with solubles for growing pigs: A metaanalysis approach. Animal feed science and technology, 231(1), 150-159. Zhan, X. Wang, M. Zhao, R. Li, W. y Xu, Z. (2007). Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Animal Feed Science and Technology, 132(3-4), 202-211. Zoidis, E. Demiris, N. Kominakis, A. y Pappas, A. C. (2014). Meta-analysis of selenium accumulation and expression of antioxidant enzymes in chicken tissues. animal, 8(4), 542-554.

Publicado
2019-10-11
Cómo citar
Quisirumbay-Gaibor, J., & Vílchez Perales, C. (2019). Suplementación de selenio y actividad de la enzima glutatión peroxidasa en suero sanguíneo en cerdos: un metanálisis. Revista De Producción Animal, 31(3). Recuperado a partir de https://transformacion.reduc.edu.cu, transformacion.reduc.edu.cu/index.php/rpa/article/view/e3102
Sección
Manejo y Alimentación